Probabilistic Modeling
A probabilistic model is a parametrized joint distribution over variables.
P(x1,…,xn,y1,…,yn∣∣θ)
- Data: x1,x2,…,xn
- Latent variables: y1,y2,…,yn
- Parameter: θ
Inference
P(y1,…,yn∣∣x1,…,xn,θ)=P(x1,…,xn,y1,…,yn∣∣θ)P(x1,…,xn∣∣θ)
Learning(Maximun Likelyhood)
θ=argmaxθ P(x1,x2,…,xn∣∣θ)
PredictionP(xn+1,yn+1∣∣x1,…,xn,θ)
Classificationargmaxc P(xn+1∣∣θc)
Bayesian Modeling
Prior distribution
P(θ)
Posterior distributionP(y1,…,yn,θ∣∣x1,…,xn)=P(x1,…,xn,y1,…,yn∣∣θ)P(θ)P(x1,…,xn)
PredictionP(xn+1∣∣x1,…,xn)=∫P(xn+1|θ)P(θ|x1,…,xn)dθ