Probabilistic Modeling

Probabilistic Modeling

A probabilistic model is a parametrized joint distribution over variables.

P(x1,,xn,y1,,ynθ)

Inference

P(y1,,ynx1,,xn,θ)=P(x1,,xn,y1,,ynθ)P(x1,,xnθ)

Learning
(Maximun Likelyhood)
θ=argmaxθ P(x1,x2,,xnθ)

Prediction
P(xn+1,yn+1x1,,xn,θ)

Classification
argmaxc P(xn+1θc)

Bayesian Modeling

Prior distribution

P(θ)

Posterior distribution
P(y1,,yn,θx1,,xn)=P(x1,,xn,y1,,ynθ)P(θ)P(x1,,xn)

Prediction
P(xn+1x1,,xn)=P(xn+1|θ)P(θ|x1,,xn)dθ